2 resultados para Phaseolus vulgaris

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cadmium (Cd) is a toxic, biologically non-essential and highly mobile metal that has become an increasingly important environmental hazard to both wildlife and humans. In contrast to conventional remediation technologies, phytoremediation based on legume rhizobia symbiosis has emerged as an inexpensive decontamination alternative which also revitalize contaminated soils due to the role of legumes in nitrogen cycling. In recent years, there is a growing interest in understanding symbiotic legume rhizobia relationship and its interactions with Cd. The aim of the present review is to provide a comprehensive picture of the main effects of Cd in N-2-fixing leguminous plants and the benefits of exploiting this symbiosis together with plant growth promoting rhizobacteria to boost an efficient reclamation of Cd-contaminated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil microbial community changes associated to conventional and organic farming of two relevant crops (Beta vulgaris and Solanum lycopersicum) were analysed through 16s rRNA amplicon sequencing. This study revealed microbial communities in the agricultural soils studied to be similar to other reported nutrient-rich microbiomes, and some significant differences between the microbial communities associated to the two farming practices were found. Some phyla (Chloroflexi and Thermi) were found to be present in different abundances according to soil treatment. As chloroplast interference can be a stumbling block in plant-associated 16s rRNA amplicon metagenomics analysis of aerial plant tissues, two protocols for bacterial cell detachment (orbital shaking and ultrasound treatment) and two protocols for microbial biomass recovery (centrifugation and filtration) were tested regarding their efficiency at excluding plant-DNA. An alternative method to the one proposed by Rastogi et al (2010) for evaluating the chloroplast-amplicon content in post-PCR samples was tested, and the method revealed that filtration was the most efficient protocol in minimising chloroplast interference.